Responsibilities of a graduate student

1. Take seminars/training in Chemical Safety, Bloodborne Pathogens at your earliest convenience.
2. Select a topic for which you will discover some new knowledge. If you are working on a funded project, it will usually be closely associated with that project.

3. Review the literature. Read all the information your advisor can suggest. Run a literature search. Read papers and patents suggested by this search. Spend at least 1 day/month updating your literature and just browsing.

4. Perform the research. Plan your experiments. Keep good notes - record as many details as possible. Try to do something in the lab every day (you have to run experiments to get data!)

5. Write up the results of the research in the form required for submission of a paper(s) to a reviewed journal.

6. Write ideas for future research in the form of a proposal to assist your advisor in submitting grant applications to NIH/DOD/etc. This should assist in providing continuing support for you and other graduate students 9-12 months after these dates.

7. US citizens and permanent residents should consider applying for fellowships (NSF, NIH) and traineeships (BTP, GTSP, CIBM). See list of links attached.

8. You may wish to read parts of the following book (or similar), which describes how to do research: F. Grinnell, The scientific attitude, 2nd ed., Guilford Press, New York, 1992, Q/175/G754/1992. Chapter 4 describes how to select a graduate program, how to pass graduate courses and exams, how to select a thesis advisor, how to fit in a laboratory, and how to write a Ph.D. thesis. Chapter 5 describes how prospective faculty members are selected, how research papers are refereed, and how research grant proposals are evaluated. Another book of interest in “A PhD is not enough” by Peter J. Feibelman.

9. Senior graduate students/post docs/scientists are responsible for training new graduate students in the ways of the world (i.e. lab procedures, technical writing, literature searching, purchasing procedures, etc.)

10. Pages/MS Word/LaTex, Endnote/Refworks, Adobe software will be used for all technical writing (pages preferred). Take the time to learn them early in your graduate career and it will save you hours of frustration when it comes time for writing papers and theses.

11. You are responsible for your own education. (i.e. it is not my job to remind you of academic deadlines, registration, course requirements, etc.)

12. Help out with general lab responsibilities such as ordering equipment, cleaning the lab, fixing equipment, setting up new equipment, storing reagents, etc.

13. Come to group/individual meetings on time and prepared.

14. Finishing - you must schedule your PhD final defense at least 30 days prior to when you actually plan to leave. This will give you time to make corrections, finish submitting papers, training others, etc. The thesis must be given to me at least 2 weeks prior to the defense and to the other committee members at least 1 week in advance.
Expectations

<table>
<thead>
<tr>
<th>Independence</th>
<th>With initial guidance, read the pertinent literature, understand it, and identify its relevance to your work.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organization</td>
<td>Come prepared to meetings to discuss/present what you did & propose to do</td>
</tr>
<tr>
<td>Productivity</td>
<td>As an MS student plan on publishing 1 or 2 and as a PhD student 4 papers in archival journals.</td>
</tr>
<tr>
<td>Background</td>
<td>Know your limitations of basic material and identify key courses to overcome these limitations. Challenge yourself to understand hard material rather than avoid it.</td>
</tr>
<tr>
<td>Communication</td>
<td>Make presentations that portray clarity in thinking, not a collection of disjointed facts. Always tell a story.</td>
</tr>
<tr>
<td>Writing</td>
<td>Improve your writing skills. The best way to do this is to write. Write a paragraph after you read a paper. Write up methods sections as you develop it. Then when it comes time to write the paper, it is mostly done already. “Writing is research”</td>
</tr>
<tr>
<td>Hours</td>
<td>Plan on working hard. This is not a “job.” But rather a test of perseverance.</td>
</tr>
<tr>
<td>Efficiency</td>
<td>Order materials, supplies in advance because things always take longer to arrive then planned. Plan ahead for your research needs.</td>
</tr>
<tr>
<td>Hands on Skills</td>
<td>Get trained appropriately and work safely.</td>
</tr>
<tr>
<td>Enthusiasm</td>
<td>Since the payoff or reward for your research may not be imminent, and you will run into problems, maintain a high level of dedication and perseverance at all times.</td>
</tr>
</tbody>
</table>

Other comments - How hard you work (assuming you are working on the right thing) is directly proportional to how long it will take you to graduate. In other words, when you graduate is up to you, not up to me. Please feel free to come to me for help with any problem (be it research or what ever). The bottom line in graduate school is getting results. So you need to learn to do whatever it takes to get the job done. This includes going to others (outside our group or even outside the university) for advice and help when necessary. Keep in mind that you will be helped by many people on your way to a PhD, so don’t forget to help others to return the favor.
Sources for traineeship & fellowship funding

Graduate Student
http://www.cibm.wisc.edu/
http://www.gstp.wisc.edu/
http://www.btp.wisc.edu/
http://www.biochem.wisc.edu/cbit/
http://www2.medicine.wisc.edu/home/hemonc/researchtraineerequirements
http://cdmrp.army.mil/bcrp/

Post docs
http://info.med.yale.edu/jccfund/fellowship
http://cdmrp.army.mil/bcrp/
http://www5.komen.org/
http://metc.med.wisc.edu/metc/traininggrant/index.php
http://mcardle.oncology.wisc.edu/training/postdoc_programs.html

NIH
http://grants.nih.gov/training/nrsa.htm

NSF
http://www.nsfgrfp.org/